User Guide: OpenEIS Reference Code

Jessica Granderson
David Lorenzetti
Claudine Custodio

Building Technology and Urban Systems Department
Lawrence Berkeley National Laboratory

A

frrerrrer "I‘

BERKELEY LAB

Lawrence Berkeley National Laboratory

Prepared for:
George Hernandez
DOE Building Technologies Office

September 30, 2013

OpenElIS Reference Code v1.0

Table of Contents

S g 0101 1
AlGOTITNIMS OVEIVIEW ... ceieeeeeeereteesseeeesseessesseessesess s s ssssse s s s es e s s bbb s s 2
Time Series Load ProfiliNg ... eeeeeseeeessesesseesessesssessesssssesssssesssssssssssssssssssssssssssesssees 2
3 (T U1) o TP 3
ENEIZY SIZNATULE ..ot s bbb 4
LT U 0= A=) 0) L A4 TP TSP 5
Longitudinal BenChmMarkingooeeneeeneeseesesseeseseesseseessessessessssssssssssssssssssssssssesssesees 6
Peak Load BeNChMATrKINGcooeeeeeereireeseeseeecsssesesseessesessse s sessssssesssssssessssssssssssssssssssesssessees 7
Base-t0-Peak Load Ratiosiisssessssssssssssssssssssssssssesssssssssssssssssssssssssssens 8
LOad DUTAtION CUTIVE....ouieieeeerirsisssess s ssssssssssssssssssssssssssssssssssss s ssssssss s sesssssssssssssssssssssssasssssens 9
L0 Variability .o cceseeceeseessereesseesessessseeeessesssessesssssssssesssessesssessssssssss s ssssssssssssssssssssessnsssees 10
Data REQUITEIMENTES......cciieieriereicieieeses s ses bbb s bbb 11
GUIAANCe fOr DIreCt USETS.....oiirieseiisissessssssessesas 12
Data File Formatting REQUITEMENTES......c.oceureuceureereereereeeesseeeesssesssssesssessessssssesssssesssesssssssssees 12
Computer Hardware REQUITEMENTES........ocriueureererreesreeeesssesesseesssssesssesssssssssessssssssssesssssssssees 13
Installing the Execution ENVIFONIMENTc.ereereereeeeesseseeseesseeessessessesssesssssssssessssssssses 13
Installing the OpenEIS Reference Code ... enmeneeneeeessessesseessessssssessesssessssnes 14
(000 T L= 2= =T L 0) o 14
TEIMS Of USE.ouiruieiieictiisississ s 16
Attribution and REPOTTING ...t seesessees s s s sssesssssssssssssssans 16
Guidance for Product Developers and Programmerseesenesseesesseessesseees 17
TEIMS Of USEouieeieiceririrsssssssssests s 17
Attribution and REPOTTING.....oceereereesseeees s sessseeseessessssssessessssssessssssssssessssssssssssssssssssssnes 17
Technical Details ... s 17
TS0 e [o T oo e U= N 19
Time Series Load ProfiliNg ... seessessessssssssssssssssssssssesssssssssssssssans 19
3 (T U 1Y) o LTS 20
ENEIZY SIZNATUTE ...ouiiiecicecesese ettt 20
LOAad DUTAtiON CUTVE.....eceirrirresssesssesssssssssssssssss s ssssssssssssssssssssssesssssssssssssssssssssssssssans 21
Longitudinal BenChmMarking ... eneneeneeseeeeseesessesssessesssessssssssssssssssssssssssssesssssssssnees 22
WeEAther SENSITIVILY ... ieceereeeeeseereeseesseesesseesssse s s s s s 23
i

OpenElIS Reference Code v1.0

The “rankForSpearman” Subprogram for the Spearman Algorithm.......ccovnneunee. 24

Base-t0-Peak Load Ratioessnas 26

Peak Load BENChMATKING ... ereeeereeeeeseeseeseesseeecssessesesssessssssssssssesssssssssssssssssssssssssssssssssssees 26

LOAd Variability .o cceseeceecesseeecsseeseeeessesessseessessessssssessesssesssesssssssss s s ssss s ssssssessssssssssssssssssssnes 27

Other Summary Electric Load Statistics, Displayed in the Report Table................... 27
ii

OpenElIS Reference Code v1.0

Purpose

This User Guide serves three key purposes:

1.

It describes the algorithms whose source code and pseudo code is made
publically available through the OpenEIS project.

It describes how these algorithms can be used by individuals who wish to
directly apply the code to analyze building data.

It describes how the source code and pseudo code can be used as a reference
implementation by developers and programmers who wish to adapt these
algorithms for use in commercial tools or service offerings. Commercial
implementations may incorporate diverse and more sophisticated interfaces,
user options, and visual representations. These options are noted in the
description of each algorithm.

OpenEIS Reference Code v1.0

Algorithms Overview

This section presents overviews of each algorithm included in the collection of Open
Energy Information System (OpenEIS) code, summarizing how each is used to gain
insights about building energy performance, operations, and comfort.

Time Series Load Profiling

Time series load profiling is used on a daily or weekly basis to understand the
relationship between energy use and time of day. Abnormalities or changes in load
profiles can indicate inefficiencies due to scheduling errors, unexpected or irregular
equipment operation, high use during unoccupied hours, or untimely peaks.

Plots of at least 24-hour periods of interval meter data (“profiles”) are inspected and
evaluated in the context of the building’s operational hours and intended system
control schedules. Changes in load size and shape against time of day, day of week,
or season are considered. Unexplainable differences may indicate operating errors
or equipment faults, and therefore energy waste, and should be investigated.

Do loads decrease during

Time Series Load Profile lower occupancy periods
(e.g. weekends or pvernight)?

It 4l I

20

o

-
w
o

HATILAT A

Does the width correspond
50} to occupancy schedule?

power [kW]

-
o
o

Minima should occur
during unoccupied
hours and be as close
to zero as possible

2o
RN\
o2 o7

0
2 2 2 2 a2 2 2 2
o> o o \)e o> oY o> QY
2l o™ @ a1 w1 a1 0 Y

QQ"Q @® @ @ ¢e® Qe“\ @7 @7 ¢e®
Date
Does the weekly profile correspond to occupancy and use for
each day for a typical week?

e®

Figure 1. OpenEIS reference code output for time series load profiling

Time series load profiling is reviewed in detail in pages 71-79 in the Energy
Information Handbook. In the OpenEIS reference code, kilowatts (kW) are plotted on
the y-axis, with time on the x-axis. The plot is limited the most recent month of data
in the dataset. More flexible implementations might allow options such as auto-
scaling based on the amount of data, user-definable subsets of data, adjustable x-
and y-axes with different zoom factors, “calendar” views that present the time series
in rows and columns that correspond to weeks and days of the week, and more.

OpenEIS Reference Code v1.0

Heat Maps

Heat maps are a means of visualizing and presenting the information that is
contained in a time series load profile. The maps color-code the size of the load so
that “hot spots” and patterns are easily identified. Time of day is plotted on the x-
axis, and day or date is indicated on the y-axis (or vice versa). The heat map is
inspected and evaluated in the context of the building’s operational hours and
schedules, or intended system control schedules. Depending on the historic length
of data that is plotted (daily, weekly, or seasonal scheduling), peak and start-
up/shut down opportunities are revealed.

Heat map of data for uploaded data

210 Unusual or

unexplainable
04/22/10 P

Horizontal 195 "hot spots" may
banding indicates y indicate poor
shutoff during equipment control
periodic days 1180
(e.g weekends) = [N =
o 04/15/10 1165 >
8 B
[
{150 £
1135
04/08/10

120

105

04/01/10 0

5 10 15 20
hour of day

Vertical banding indicates consistent daily scheduling of usage
Figure 2. OpenEIS reference code output for heat maps

Heat maps are reviewed in pages 242-243 in the Energy Information Handbook. In
the OpenEIS reference code, blue coloring corresponds to low or minimum building
load, and red coloring corresponds to high or maximum building loads. Loads are
presented in units of kW, and hours of the day are plotted on the x-axis, and specific
days on the y-axis. The plot is limited to the most recent year of data in the dataset.
More flexible implementations might allow options such as auto-scaling based on
the total amount of data, plotting of user-defined subsets of data, or scaling the color
bar from zero to the maximum observed load.

OpenEIS Reference Code v1.0

Energy Signature

Energy signatures are used to monitor and maintain the performance of
temperature- dependent loads such as whole-building electric or gas use, or heating
and cooling systems or components. They can reveal problems with insulation,
outside air intake, or system efficiency.

Energy use for a given time interval is plotted against the corresponding average
outdoor temperature in that period. Orderly data points reflect consistent behavior,
while highly scattered data points indicate potential inefficiency or lack of weather
sensitivity. Other useful areas to examine are “base loads” (at which the energy use
does not change with temperature) and the rate at which load changes with outside
air temperature, known as the “heating slope” and/or “cooling slope.”

Energy Signature
Weather Sensitivity =0.86

4500 -
A steep slope indicates high
4000 sensitivity to outdoor
temperature
3500
3000
The lack of any _, If weather sensitivity > 0.7
patternmay £ 2500 the building energy use is
indicate your T 'highly’ sensitive to outside
building 1s not % 2000 air temperature. There may
sensitive to = be opportunities to improve
outdoor 1500 building insulation. and
temperature ventilation
1000
500
0]
Q ° I\ ® L .\50 .\10

outside air temperature [F]

The balance point is the temperature at which the
building does not require any heating or cooling

Figure 3. OpenEIS reference code output for energy signature

Energy signatures are reviewed in detail in pages 147-155 in the Energy
Information Handbook. In the OpenEIS reference code, the energy metric is electric
kW, and the temperature metric is degrees Fahrenheit. The plot is limited to the
most recent year of data in the dataset. More sophisticated implementations might
fit line segments to the data, making explicit note of the heating and cooling slopes
and balance point. Enhanced flexibility would accommodate filtering to user-defined
subsets of data, for example.

OpenEIS Reference Code v1.0

Weather Sensitivity

Weather sensitivity can be characterized by the Spearman rank-order correlation
between building load and outside air temperature. This metric ranges from -1 to 1;
however, for buildings, negative values are not expected. For example, if the value of
the weather sensitivity metric is greater than 0.7, the building energy use is “highly”
sensitive to outside air temperature, and there may be insulation, ventilation, or
efficiency improvement opportunities.

In the OpenEIS reference code, the weather sensitivity metric is displayed as an
overlay to the energy signature plot—a single summary statistic that contextualizes
the shape of the energy signature. The metric is computed for the most recent year
of data in the data set.

In the idealized case where there are no duplicate load values and no duplicate
outside air temperatures, the Spearman rank-order correlation can be defined
according to the equation below, as:

2P

© o N(NP-1)
where Dis the difference between each pair of ranks

However, since duplicate temperatures and loads are likely in any sufficiently large
data set, the OpenEIS implementation uses the defining equation, which finds the
correlation coefficient (i.e., the Pearson product-moment correlation) between the
rank orders of the loads and temperatures. Repeated load values are assigned the
average rank for all the loads with that value, and similarly for temperatures. In
addition, the OpenEIS implementation excludes from the analysis any load-
temperature pair for which either the load or temperature datum is missing.

A more flexible version of this algorithm would allow filtering to user-defined sub-
sets of data, for example to find correlations only during certain hours, only during
weekdays, and so on.

OpenEIS Reference Code v1.0

Longitudinal Benchmarking

Longitudinal benchmarking compares the energy usage in a fixed period for a
building, system, or component to that in a comparable “baseline” or “base” period
of the same length, to determine if performance has deteriorated or improved, to set
goals for a building or system, or to monitor for unexpectedly high usage.

Energy use in the base (reference) period is expressed according to a metric of
choice, such as thousand Btu per square foot (KBtu/sf), forming a “benchmark.”
Performance is then tracked relative to the base-period benchmark.

1400000 Longitudinal l?enchmarkmg

Compare energy use in the base year to that in the later years

1200000} \

1000000

800000

600000

Annual Energy (kwWh]

400000

A persistent or large increase in
200000 bar height reflects growing annual
energy use and possible efficiency
opportunities

8/2010-8/2011 8/2011-8/2012 8/2012-8/2013
Datetime
A significant efficiency improvement would result in
adownward trend of decreasing bar height

Figure 4. OpenEIS reference code output for longitudinal benchmarking

Longitudinal benchmarking is reviewed in detail in pages 51-58 in the Energy
Information Handbook. In the OpenEIS reference code annual electricity
consumption is represented in kWh, and plotted in vertical bars. The base year is
defined as the first full year of data in the dataset. More flexible implementations
would allow user-definable time periods other than annual usage, for example using
arolling 12-month totalization of energy use as opposed to a fixed base year.

OpenEIS Reference Code v1.0

Peak Load Benchmarking

Peak load benchmarking is used to compare a building’s peak electric load to a peer
group. High peak loads can have a significant impact on utility costs in cases where
demand charges are assessed, and are also a critical contributor to electrical
reliability during times of extreme demand on the grid.

Peak Load Benchmark [W/sf]: |

'This is the absolute maximum electric load based on all of your data. The median for commercial buildings under

150,000 sf is 4.4 W/sf. Values much higher than 4.4 therefore indicate an opportunity to improve building B
gformance.
\Average da ax [kW]:
ata - - avorale TS, 192.32

IThe daily maximum usage coulg"oe ghiea sinale large load, or could be th mo
Long periods of usage near the maximum increase overall energy use.

\Average daily min [kW]:
Minimum usage is often dominated by loads that run 24 hours a day. In homes, these include refrigerators and 105.19
vampire loads. In commercial buildings, these include ventilation, hallway lighting, computers, and vampire loads.

Average daily range [kW]:
This is a rough estimate of the total load turned on and off every day. Higher values may indicate good control, but 87.13
could also indicate excessive peak usage.

Base-to-peak load ratio:
\Values over 0.33 indicate that significant loads are shut off for parts of the day. To save energy, look to extend and 0.61
deepen shutoff periods, while also reducing peak energy use.

Load variability metric:

'This metric is used to understand regularity of operations, and the likelihood of consistency in the building's
demand responsiveness. It represents a coefficient of variation that ranges from 0 to 1, which can be interpreted 0.16
based on rule of thumb guidelines. For example, variability above 0.15 is generally considered high for commercial
buildings.

Figure 6. OpenEIS reference code output for peak load benchmarking

Peak load benchmarking is addressed in the Peak Load Analysis example on page 85
in the Energy Information Handbook. In the OpenEIS reference code, peak load is
defined as “the absolute maximum load that appears in the data set, and is
normalized by building area, for a watts per square foot (W/sf) metric.” The
EnergylQ benchmarking tool was used to generate the median peak load against
which a user’s data can be compared. The California Commercial End-Use Survey
data set was used, and the peer group was defined as: all commercial building types
and vintages, from all California climates, with floor areas less than 150,000 sf. For
this peer group, the median peak is 4.4 W/sf. In the OpenEIS reference code, peak
load benchmarking results are presented in a summary table of key metrics;
however, peak load benchmarking results may also be presented with a visual
display of the building load profile or other developer-defined presentations.

OpenEIS Reference Code v1.0

Base-to-Peak Load Ratios

Base-to-peak load ratios compare the minimum building load to the maximum
building load, to judge whether the building is “shut down” after hours. A ratio
closer to zero indicates a large difference between the smallest and largest building
loads, whereas a ratio closer to zero indicates a near-static, non-fluctuating load,
and therefore an opportunity to improve efficiency. Improvements can be made by
increasing the duration of scheduled equipment-off times and by increasing the
number of loads that are shut off after hours.

A “good” versus “poor” value of base-to-peak load depends on the specific building
operations and characteristics; however, ratios less than approximately 0.33
indicate that significant loads are shut off for parts of the day.

Value

Peak Load Benchmark [W/sf]:
This is the absolute maximum electric load based on all of your data. The median for commercial buildings under 2.40
150,000 sf is 4.4 W/sf. Values much higher than 4.4 therefore indicate an opportunity to improve building

performance.

\Average daily max [kW]:
The daily maximum usage could be dominated by a single large load, or could be the sum of several smaller ones. 192.32
Long periods of usage near the maximum increase overall energy use.

\Average daily min [kW]:
Minimum usage is often dominated by loads that run 24 hours a day. In homes, these include refrigerators and 105.19
vampire loads. In commercial buildings, these include ventilation, hallway lighting, computers, and vampire loads.
I

Average daily range [kW]:
This is a rou e total load turned on and off every day. Higher values may indicate good control, but
CO ndicate excessive peak usage.

W

Base-to-peak load ratio:
\Values over 0.33 indicate that significant loads are shut off for parts of the day. To save energy, look to extend and 0.61
deepen shutoff periods, while also reducing peak energy use.

riability metric:

This metric nderstand regularity of operations, and the likelihood of consistency in the building's
demand responsiveness. It i iation that ranges from O to 1 i i
based on rule of thumb guidelines. For example, variability above 0.15'is generally considered high for commercial
buildings.

Figure 7. OpenEIS reference code output for base-to-peak load ratio

Base-to-peak load ratios are covered under the Peak Load Analysis examples in
pages 86-87 in the Energy Information Handbook. In the OpenEIS reference code,
the base load is defined as the 5th percentile, and the peak load is defined as the
95th percentile. The absolute maximum and minimum load are purposely excluded,
to avoid one-off cases. The base and peak loads are computed for each day in the
data set. The base-to-peak load is calculated for each day, and the average of these
ratios is the average daily base-to-peak load ratio. In the reference code, the ratio is
presented in a summary table of key metrics; however, analysis of peak-to-base
loads may also be presented with a visual display of the building load profile. More
sophisticated implementations might filter weeks and holidays, or accommodate
other user-defined filtering options.

OpenEIS Reference Code v1.0

Load Duration Curve

Load duration curves are used to understand the number of hours or percentage of
time during which the building load is at or below a certain value. Ideally, the
highest loads should occur for a smaller fraction of the time. If the building is near
its peak load for a significant portion of the time, the HVAC equipment could be
undersized, affecting comfort; conversely, there may be systems that are running
more continuously than necessary. If the load is near peak for only a short duration
of time, there may be an opportunity to reduce peak demand charges.

In a load duration curve, the y-axis indicates the building load, and the x-axis
indicates the percent of the time (or total number of hours) that the load is at or
below that load. A curve that is steep on the left side of the plot indicates that high
loads are present a small fraction of the time; whereas, as a curve that is steep on
the right side indicates the reverse.

Load Duration Curve

200+
If the building is near its peak load
for a significant portion of the time
the HVAC equipment could be

150} undersized or there could be

'g T}l':e l;;ghest.loads all systems that are running more
o=t SO CrocoL L A A than necessary

] fraction of the time

=

8 100 ,1deale

If the load is near peak for only a
short duration of time. there may
S0 be an opportunity to reduce peak
demand charges

0 20 20 60 80 100
percent time

Figure 8. OpenEIS reference code output for load duration curve

Load duration curves are covered in the Peak Load Analysis example on page 89 in
the Energy Information Handbook. In the OpenEIS reference code, the x-axis is the
percentage of the total time that is spanned by the data; the y-axis ranges from zero
to the maximum load that appears in the data set. The plot in the OpenEIS reference
code is limited to the most recent year of data in the dataset.

OpenEIS Reference Code v1.0

Load Variability

Load variability is a measure of the degree to which whole-building loads are
regular and predictable. It is a metric that is used to understand regularity of
operations, and the likelihood of consistency in the building’s demand
responsiveness. [t represents a coefficient of variation that ranges from 0 to 1,
which can be interpreted based on rule-of-thumb guidelines. For example,
variability above 0.15 is generally considered high for commercial buildings.

Peak Load Benchmark [W/sf]:

|This is the absolute maximum electric load based on all of your data. The median for commercial buildings under
150,000 sf is 4.4 W/sf. Values much higher than 4.4 therefore indicate an opportunity to improve building
performance.

2.40

\Average daily max [kW]:
IThe daily maximum usage could be dominated by a single large load, or could be the sum of several smaller ones. 192.32
Long periods of usage near the maximum increase overall energy use.

\Average daily min [kW]:
Minimum usage is often dominated by loads that run 24 hours a day. In homes, these include refrigerators and 1
ivampire loads. In commercial buildings, these include ventilation, hallway lighting, computers, and vampire loads.

5.19

[=}
(%)

\Average daily range [kW]:
[This is a rough estimate of the total load turned on and off every day. Higher values may indicate good control, but 87.13
could also indicate excessive peak usage.

Base-to-peak load ratio:
\Values over 0.33 indicate that significant loads are shut off for parts of the day. To save energy, look to extend and 0.61
deepen shutoff W
mhy metric:
'This metric is used to understand regularity of operations, and the likelihood of consistency in the building's
demand responsiveness. It represents a coefficient of variation that ranges from 0 to 1, which can be interpreted 0.16
based on rule of thumb guidelines. For example, variability above 0.15 is generally considered high for commercial

e

Figure 9. OpenEIS reference code output for load variability

Load variability is covered in the Load Profiling example on page 78 of the Energy
Information Handbook. In the OpenEIS reference code, load variability is presented
in a summary table of key metrics.

In the OpenEIS implementation, load variability is defined as “the average of the
time-of-day load variabilities.” To find the time-of-day variability, collect all
observations for a particular hour and find the variability for that time of day, as
follows:

(-3

VAR =

where x is the average hourly load in the period,

and N isthe number of daysin the period

The load variability is the average of the 24 time-of-day variabilities calculated
according to the equation above.

10
OpenElIS Reference Code v1.0

Data Requirements

This section summarizes the data requirements associated with each of the
algorithms in the collection of OpenEIS reference code.

Table 1. Data Requirements for the OpenEIS Algorithms

Algorithm Data Requirements
Data Type Minimum Resolution

Time Series Load | Whole-building electric Hourly
Profiling
Heat Maps Whole-building electric
Energy Signature | Whole-building electric

Outside air temperature
Weather Whole-building electric
Sensitivity

Outside air temperature
Longitudinal Whole-building electric Annual
Benchmarking

Building floor area n/a
Peak Load Whole-building electric Hourly
Benchmarking

Building floor area n/a
Base-to-Peak Whole-building electric Hourly
Load Ratios
Load Duration Whole-building electric
Curves
Load Variability Whole-building electric

OpenEIS Reference Code v1.0

Guidance for Direct Users

This section reviews the installation, computer hardware and software, and file
formatting requirements that must be met to run the OpenEIS source code against a
set of building energy data.

Data File Formatting Requirements

Data should be organized into the following files:
e A main data file, containing time-stamped electricity, gas, and outside air

temperature data.

The main data file requirements are as follows:

The file must have the following four columns, in this order: Date-Time,
Outside Air Temperature, Main Electricity Meter, and Natural Gas Meter.
Columns are comma-delimited.

The first row is reserved for the column headers. The exact text of the
column headers does not matter.

Date-Times should be formatted as: (M)M/(D)D/YYYY (H)H:MM, with no
quote marks or other punctuation.

Outside Air Temperatures are floating-point numbers. Assumed to be [F].
Main Electricity Meter data are floating-point numbers. Assumed to be [kW].
Natural Gas Meter data are floating-point numbers. Assumed to be [kBtu/hr].

An example of a correctly formatted main data file is shown below in Figure 14.

12

OpenEIS Reference Code v1.0

/| Bldg90_1Week.csv - Notepad o[@] =]

File Edit Format View Help
Date,Hillside OAT [F],B-90 Main Meter - Trailers subtracted [kw],*Boiler Gas Power Baseline (kstu/hr) ~

6/1/2012 0:00,56.86,103.57,64.07

6/1/2012 1:00,55.6,107.28,89.03

6/1/2012 2:00,55.55,109.42,149.29

6/1/2012 3:00,55.87,110.89,274.23 3
6/1/2012 4:00,56.08,136.14,474.79

6/1/2012 5:00,57.3,141.65,734.73

6/1/2012 6:00,54.8,147.39,876.15

6/1/2012 7:00,54.69,159.77,767. 89

6/1/2012 8:00,59.45,182.81,591.25

6/1/2012 9:00,61.36,199.16,423.62

6/1/2012 10:00,63.9,208.78,289. 64
6/1/2012 11:00,69.64,210.04,260.18
6/1/2012 12:00,83.06,209.55,203.02
6/1/2012 13:00,87.55,219.07,121.04
6/1/2012 14:00,91.27,226.64,69. 37
6/1/2012 15:00,91.77,224.26,57.79
6/1/2012 16:00,90.52,214.18,59. 64
6/1/2012 17:00,88.21,192.65,55.78
6/1/2012 18:00,79.9,128.66,47.5
6/1/2012 19:00,65.59,108.96,30. 28
6/1/2012 20:00,60.41,102.9,13.35
6/1/2012 21:00,58.36,102.45,0.16
6/1/2012 22:00,57.92,100.62,6.05
6/1/2012 23:00,55.74,100.1,52.24

6/2/2012 0:00,54.38,101.27,14.21
6/2/2012 1:00,54.14,102.15,25.98
6/2/2012 2:00,53.49,104.84,37.83
6/2/2012 3:00,53.23,104.98,43.17
6/2/2012 4:00,53.1,107.68,68.55

6/2/2012 5:00,52.79,107.79,87.89
6/2/2012 6:00,52.87,110.48,64.94
6/2/2012 7:00,54.18,112.16,53.09
6/2/2012 8:00,56.43,111.82,76.52

9

6/2/2012
6/2/2012 10:00,60.73,110.47,83.35

6/2/2012 11:00,66.46,110.45,52.68

6/2/2012 12:00,80.82,110.11,28. 63

6/2/2012 13:00,84.83,109.73,25.14

6/2/2012 14:00,82.38,107.03,10.87

6/2/2012 15:00,83.15,106.86,4.43

6/2/2012 16:00,81.98,104.35,0.26

6/2/2012 17:00,79.66,102.45,0 i

:00,58.68,112.02,94.24

Figure 14. Example of the main data file

Computer Hardware Requirements

The hardware and operating system must be able to run Python and the associated
libraries, as shown below. That is, if a distribution of Python is available for a
particular machine, then there are no other host system requirements.

Installing the Execution Environment

The “execution environment” refers to the system tools used to run the OpenEIS
reference algorithms. The following tools must be installed:

e Python v2.7 (http://www.python.org/getit/).

e SciPyv0.12 (http://www.scipy.org/scipylib/download.html).

e Note that a “full stack” distribution may be available; this includes both
Python and SciPy, already configured to work together
(http://www.scipy.org/install.html).

e Numpy v1.7 (http://sourceforge.net/projects/numpy/files/NumPy/1.7.1/).
Note that this should be installed along with SciPy.

e Matplotlib v1.2 (http://matplotlib.org/downloads.html). Note that this
should be installed along with SciPy.

We recommend installing Python first, and allowing the installers to put the
libraries in their default locations.

13
OpenElIS Reference Code v1.0

If your machine already has Python, plus either “pip” or “easy_install,” these should
provide an easy method for installing the additional libraries.

Installing the OpenEIS Reference Code

Next, install the OpenEIS reference code. The entire package can be downloaded
from http://eis.Ilbl.gov/openeis.html. Expanding the downloaded zip file yields a
directory containing the complete set of code and sample input files.

The directory containing the reference suite can be installed in any convenient
location in your directory tree. We recommend placing it along with your regular
documents, for example, under the “My Documents” directory on Windows, or
under the “Documents” directory on Mac OSX.

Similarly, the directory containing the reference suite can be given any name. The
instructions that follow assume the folder is called “open_eis”.

While the directory containing the reference suite can be relocated and renamed at
will, this is not true of the “open_eis_lib” subdirectory. This subdirectory contains
the scripts that implement the algorithms. Changing its name, the names of any of
the files it contains, or the paths to any of the files it contains, will break the
software distribution.

Code Execution

Next, run the algorithms on the sample data provided. To do so:
e Open a command-line window from which you can run Python. For example:

0 “Terminal” on Mac OS X.

0 “Command Prompt” on Windows (i.e., the DOS prompt).

O0 “Terminal” on Ubuntu Linux.

O Some Python distributions include a Python-specific command-line
interpreter, distinct from shell utilities like “Terminal” and the DOS
command prompt. For example, IDLE is the standard Python
integrated development environment
(http://docs.python.org/2 /library/idle.html). However, the rest of
these instructions assume you are using a conventional shell utility.

e (Check that you can access Python. At the command-line prompt (>), enter:
> python -V
The Python interpreter should respond with the version number. For
example:
> python -V
Python 2.7.5
If not, consult your Python installation guide.

e Navigate to the OpenEIS installation directory. For example:

© On Linux or Mac OS X:
> cd Documents/open eis

14
OpenElIS Reference Code v1.0

© On Windows:
> cd “My Documents\open eis”
e Check for the Python script called “run_demo.py”. For example, entering the
following commands should show that the file exists:
© On Linux or Mac OS X:
> 1ls run demo.py
© On Windows:
> dir run demo.py
e Run the script:
> python run demo.py
e This should bring up a small window, as shown below:

MNO OpenElS

Building data
CSV file none selected (" Select CSV file)

Floor area [sf]

Building name (optional)

Status

Waiting for CSV file to analyze

P P e — T TR
[Run analysis)
i X k) o

e (lick the button to “Select CSV file”. In the resulting dialog box, navigate to
the subdirectory “sample_files/main_data_csv” in the “open_eis” directory.
From that subdirectory, select one of the CSV files with “load” in its name.

e Fill in the building floor area (for the sample files with “Bldg90” in the name,
62000 square feet is appropriate, but the exact number is not necessary).

e Ifdesired, fill in the building name.

Click the “Run analysis” button.

e The algorithms should run against the data in the selected file. When done,
the status text in the window should update to announce where to find the
results. For example:

15
OpenElIS Reference Code v1.0

e NO OpenEIS

Building data

CSV file Bldg90_load_lweek.csv (Select CSV file)

Floor area [sf] 62000

Building name Building 90 (optional)

Status

Wrote results in directory "report_Bldg90_load_lweek"

P ————
[Run analysis |

e You may select another file, or choose “Quit” to close the window.

The output from running the algorithms is an html report located in the code
directory. Open this file to see the results for your building.

Terms of Use

This source code is available for free public use under a 3-clause BSD (Berkeley
Software Distribution) license; registration and agreement to the terms and
conditions are the only requirements for download.

Attribution and Reporting

The OpenEIS reference source code and pseudo-code were developed under funding
from the U.S. Department of Energy, Building Technologies Office. They are available
to the public at no charge.

Your feedback is critical to tracking the impact of this work. Please take a moment to
send the OpenEIS project team a short note to let us know how you are using these
algorithms.

16
OpenElIS Reference Code v1.0

Guidance for Product Developers and
Programmers

This section reviews the terms of use and technical details for developers and
programmers who wish to adapt the OpenEIS reference source code or pseudo-code
for use in products or services.

Terms of Use

This source code is available for free public use under a 3-clause BSD (Berkeley
Software Distribution) license; registration and agreement to the terms and
conditions are the only requirements for download.

Attribution and Reporting

The OpenEIS reference source code and pseudo-code were developed under funding
from the US Department of Energy, Building Technologies Office. They are available
to the public, at no charge.

Your feedback is critical to tracking the impact of this work - please take a moment
to send the OpenEIS project team a short note to let us know how you are using
these algorithms.

Technical Details

Informal pseudo-code for the core OpenEIS algorithms appears below. The pseudo-
code provides a high-level picture of the underlying logic for each algorithm, and
how each metric or graphic is developed.

Developers who wish to implement a more robust, user-friendly tool are
encouraged to refer to the source code developed as part of the OpenEIS algorithms
reference implementation. That source code includes:
e [mplementations of the core algorithms.
e [mplementations of auxiliary methods needed to run the core algorithms (for
example, reading comma-separated values (CSV) files, formatting output, and
cleaning up missing data).

e Specifications, in the form of unit tests, for the exact results expected from
the core algorithms. For example, the unit test for the weather sensitivity
metric checks that the results from the reference code match independent

17
OpenEIS Reference Code v1.0

calculations of the expected answer. These same tests can be adapted to
check re-implementations of the core algorithms.

In addition, the distribution contains several types of documentation to help
navigate the code. At a low level, each module, plus major functions, use Python
“docstrings” to embed a variety of information directly into the code:

e The types and meaning of input data (e.g., function arguments).

e The types and meaning of outputs (e.g., function return results).

e Notes and caveats that will provide insight into how to use the function.

e Enhancements that would make the module more useful in a feature-

complete implementation of the OpenEIS algorithms.

At a higher level, and maintained separately from the code, is documentation
showing the broader organization of the code, along with overviews of the functions
and how they interface. This includes versions of the pseudo-code shown in the next
section. See the “developer_doc” subdirectory.

18
OpenElIS Reference Code v1.0

Pseudo-

code

This section provides pseudo-code for the reference algorithms. The pseudo-code
gives an overview of how to implement the algorithms, using high-level English
language-like descriptions.

Time Series Load Profiling

Get inputs:
- times, vector
- loads, vector

Identify the data
- Take the last
distinct.

of date-times (typically a time-specific format).
of power data recorded at times (float).

of interest:
single month of data. This ensures that the data are visually

Make the load profile plot:
- Make an x-y line graph of y=Llast-month-loads as a function of
x=Llast-month-times.

Done.

19

OpenElIS Reference Code v1.0

Heat Map

Get inputs:
- times, vector of times (typically a time-specific format).
- Loads, vector of power data recorded at times (float).

Assume:
- Data are collected at the same time every day.

Identify the data of interest:

- Take the last year of data. This ensures that the data are visually distinct.

Break up the data into rows, each representing one day:

- Reshape times into an array timesByDay, each of whose rows corresponds
to one calendar day, with the date increasing in higher-numbered rows. Use
the local time zone to determine transitions between days. Each column of
timesByDay should correspond to a particular time of day. Note this may
require special padding for the first and last rows, if times does not
start or end exactly at midnight. If padding is needed, pad with a special
NAN (not-a-number) indicator.

- Reshape loads into an array loadsByDay, using the same row breaks and
row padding as for timesByDay.

Make the heat map:

- Define a color mapping from a power to a color. Details include the spectrum

of colors to be used, the min/max range of the color bar, and bin sizes for
the color bar.

- Make a density map, a binned x-y color map with x given by the time-of-day
in timesByDay, and with y given by the dates in timesByDay. The color
of each cell is defined by applying the color mapping to the appropriate
entry in loadsByDay.

Done.

Energy Signature

Get inputs:
- oats, vector of outside air temperatures (float).
- Lloads, vector of corresponding power data (float).

Identify the data of interest:
- Take the most recent year of data. This ensures that the data are visually
distinct.

Make the energy signature plot:
- Make an x-y scatter plot, showing y = loads as a function of x = oats.

Done.

20

OpenElIS Reference Code v1.0

Load Duration Curve

Get inputs:
- Loads, vector of power data (float).
- asPercent, flag indicating how to format the x-axis of the graph
(boolean). "True" means to express the duration as a percent of time.
"False" means to express duration as the number of observations.

Identify the data of interest:
- Take the most recent year of data. This limits the likelihood the data spans
different operational regimes (schedules, internal loads, etc..).

Assume:
- The Loads were recorded at uniform intervals.

Sort the loads:
- Find sortedlLoads by sorting Lloads in reverse order, i.e., from largest
to smallest. For example, if
Loads = (1, 3, 2, 4)
then
sortedLoads = (4, 3, 2, 1)

Find values for the x-axis:
- Set loadCt to the number of entries in loads.
- if(asPercent is “True”):
* Set durs to a sequence of evenly-spaced percentages, from @ to 100,
with LloadCt percentages in the sequence.
* Note that this may require finding the step change from one number in
the sequence to the next. If so, then find
step = 100 / (loadCt - 1)
When doing this calculation, be sure to avoid integer division.
For example, if
LoagdCt = 4
then
step = 100/3 = 33,3333
However, integer division may give 100 / 3 = 33.
- else:
* Set durs to the sequence of integers from 1 to LloadCt.

Make the load duration curve:
- Make an x-y line graph, showing y = sortedLoads as a function of
X = durs. As a practical matter, note that many plotting libraries do
not require that durs be made explicit, when durs runs from 1 to
LoadCt (i.e., when asPercent is "False").
- Typically the lower extent of the y-axis is fixed at zero power, in order
to provide context for the range of power data.

Done.

21
OpenElIS Reference Code v1.0

Longitudinal Benchmarking

Get inputs:
- times, vector of date-times (typically a time-specific format).
- Loads, vector of power data recorded at times (float).
- areaFt2, floor area of corresponding space [ft”*2] (float).

Assume:
- Data include at least two years of observations.

Aggregate power data into annual energy intensity:

- Separate loads into subsets of data that are 12 months long. Mark years
so that the last year ends on the last day in times. For example, if the
last observation is on 12-June, then every year should end on 12-June.

- Set years to an empty list.

- Set yearlyEnergyIntensities to an empty list.

- For each year currYear, call the appropriate data currYearlLoads:

* Set currYearEnergy to the time integral of currYearLoads.

* Set currYearIntensity to the energy intensity, i.e., to
currYearEnergy / areaFt2.

* Append currYear to years.

* Append currYearIntensity to yearlyEnergyIntensities.

Make the longitudinal benchmarking plot:
- Make a bar chart, showing y = yearlyEnergyIntensities as a function of

category = years.

Done.

22
OpenElIS Reference Code v1.0

Weather Sensitivity

Weather sensitivity is calculated by finding the Spearman rank correlation
coefficient, as follows:

Get inputs:
- xValues and yValues, two vectors of values (float). For weather
sensitivity, xValues are the outside air temperatures, and yValues
are the corresponding loads. However, note that interchanging xValues
and yValues will still give the same correlation coefficient.

Identify the data of interest:
- Take the most recent year of data. This limits the likelihood the data spans
different operational regimes (schedules, internal loads, etc..).

Assume:
- Both xValues and yValues have the same number of entries.
- Any missing or corrupted entries in xValues and yValues have
been marked as NAN (not-a-number). These entries will be excluded from
the analysis.

Mark pairs of entries for exclusion:

- Set valCt to the number of entries in both xValues and yValues.

- Set nanLocs to an array of valCt boolean values ("T" or "F"). The
entry at each position in nanlLocs indicates whether either xValues or
yValues has a NAN in the corresponding location. For example, if
XxValues = (1, 2, NAN, 4, NAN)
yValues = (51, NAN, 53, 54,NAN)
then
nanLocs = (F, T, T, F, T)

- Write a NAN to every position in xValues and yValues for which
nanLocs is "T". 1In the example above, this results in
xValues = (1, NAN, NAN, 4, NAN)
yValues = (51, NAN, NAN, 54, NAN)

Rank the remaining entries:

- Set xRanks = rankForSpearman(xValues).

- Set yRanks = rankForSpearman(yValues).

- Note the pseudo-code for subprogram rankForSpearman() appears below.

- Note both xRanks and yRanks are vectors containing valCt integers.
For any valid index 11, the entry xRanks[ii] gives the ranking that
xValues[ii] would have if sorted into ascending order. Valid ranks run
from 1 to valCt, with the following exceptions: (1) equal values receive
the mean rank of those values; and (2) NAN entries receive a rank 0.

Subtract out the mean ranks:
- Set xRanksZeroMean to xRanks minus the mean rank of xRanks. Note
that xRanks may contain zeros, due to NAN entries in xValues. Exclude
these zeros when finding the mean rank. For example, if xRanks has
valCt = 50 but two NAN entries, then the mean rank is the sum of the
entries in xRanks, divided by 48.
- Set yRanksZeroMean to yRanks minus the mean rank of yRanks.

Find the Spearman rank correlation coefficient:
- Set cosineFactor to the inner (dot) product of xRanksZeroMean with
YRanksZeroMean .
- Set xMagSq to the inner (dot) product of xRanksZeroMean with itself.
- Set yMagSq to the inner (dot) product of yRanksZeroMean with itself.
- Find the Spearman coefficient using:
spearmanCoeff = cosineFactor / sqrt(xMagSq * yMagSq)

23
OpenElIS Reference Code v1.0

- Note that the Spearman coefficient is the Pearson coefficient of the
rank vectors xRanks and yRanks.
- Note that a correct calculation yields -1 <= spearmanCoeff <= 1.

Return spearmanCoeff.

Done.

The “rankForSpearman” Subprogram for the
Spearman Algorithm

Get inputs:
- values, vector containing valCt numbers (float).

Assume:
- Any entries in values that should be excluded from the ranking
have been marked as NAN (not-a-number).

Find the sorted order of entries in values:

- Set srtdToActIdx to a vector of valCt indices that would sort values,
from smallest to largest. That is, srtdToActIdx[ii] should give the index
of the iith entry in a sorted version of values.

- Duplicate entries in values may be sorted in any order. That is, it is
not necessary to perform a "stable sort" that preserves the original order
of duplicate entries in values.

- NAN entries in values should be excluded from the main sequence of sorted
values. In practice, the sorting routine may treat NAN entries as larger
(or smaller) than floating-point numbers, thus placing them at the end (or
beginning) of srtdToActIdx. The examples below assume that NAN entries
sort to the highest position.

- For example, if
values = (6.6, 1.1, 3.3, NAN, 1.1)
then
srtdToActIdx = (1, 4, 2, 0, 3)
is a possible ranking. Consider ii = 3. Since srtdToActIdx[3] = 0, it
follows that values[@] = 6.6 would be at index 3 in a sorted version of
values. Note that there is one other acceptable ranking, due to the
duplicated entry 1.1 in values. Also note that, in programming languages
that index arrays from 1 (such as R or Fortran), the entries in
srtdToActIdx should be one greater than shown in the example.

- Note that merely sorting values is not helpful, because the simple act of
sorting does not retain information about which index of the original
values vector provided each entry in the sorted vector.

- In practice, some high-level programming environments provide sorting
routines that return the indices needed to sort a vector; this is exactly
the required srtdToActIdx.

Find the average rank order of each non-NAN entry in values:
- Initialize ranks as a vector of valCt entries, all equal to @.
- Set lastVal to values[srtdToActIdx[©]]. Note this should be the
smallest entry in values.
- Set startRunIdx to o.

24
OpenElIS Reference Code v1.0

- for currIdx running from 1 to valCt-1 (i.e., for every entry after the first):
* Set currVal to the corresponding entry in the sorted vector, i.e.,

to values[srtdToActIdx[currIdx]].
* if(currval is NAN):
- Stop looping over currIdx.

* if(currVal is different from lastVal, including if LlastVal is NAN):
- Find the mean rank that should be assigned to indices startRunIdx
through currIdx-1, inclusive. The sorted rank at currIdx-1 is

currIldx, so find the mean rank as
meanRank = 0.5 * (startRunIdx + currIdx + 1)
Note that in a language that indexes arrays from 1, the sorted rank
at currIdx-1 is currIdx-1, so the mean rank is
meanRank = 0.5 * (startRunIdx + currIdx - 1)
- while(startRunIdx < currIdx):
* Set ranks[srtdToActIdx[startRunIdx]] to meanRank.
* Increment startRunIdx by 1.
- Set lastVal to currVal, in order to mark the start of a new run
of equal values. Note that startRunIdx should already be equal to
currIdx, due to the while-loop above.

- Assign ranks to the last entries inspected in the loop above:

* Set meanRank to the mean rank, using the same formula shown above.
* while(startRunIdx < currIdx):

- Set ranks[srtdToActIdx[startRunIdx]] to meanRank.

- Increment startRunIdx by 1.

- Here, every entry of ranks should have the rank of the corresponding
entry in values, with equal values assigned their mean rank, and with
NAN values assigned a rank of @. Continuing the example above, if
values = (6.6, 1.1, 3.3, NAN, 1.1)
then
ranks = (4, 1.5, 3, 0, 1.5)

Note that, unlike the entries in srtdToActIdx, ranks does not depend on
whether the programming language indexes arrays from © or from 1. Ranks
always range from 1 (or larger, for the smallest non-NAN entry in values)
to valCt (or less, for the largest non-NAN entry in values).

Return ranks.

Done.

25
OpenElIS Reference Code v1.0

Base-to-Peak Load Ratio

Get inputs:
- times, vector of date-times (typically a time-specific format).
- Loads, vector of power data recorded at times (float).

Compute the base-to-peak load metric:
- For each day in times, find the base-to-peak ratio of the loads:
* Set dayBase to the 5th percentile of Loads for the day.
* Set dayPeak to the 95th percentile of Lloads for the day.
* Set dayBPRatio to dayBase / dayPeak.
- Average across days:
* Set aveDayBPRatio to the average of the dayBPRatio values.

Return aveDayBPRatio.

Done.

Peak Load Benchmarking

Get inputs:
- times, vector of date-times (typically a time-specific format).
- Loads, vector of power data recorded at times (float).
- areaFt2, floor area of corresponding space [ft”*2] (float).

Calculate statistics:
- Set peakLoad to the maximum value in loads.

- Set peakLoadIntensity to peakLoad / areaFt2.

Return peakLoadIntensity.
- TODO: Code currently reports peakLoad, not peakLoadIntensity.

Done.

26
OpenElIS Reference Code v1.0

Load Variability

Get inputs:
- times, vector of date-times (typically a time-specific format).
- Loads, vector of power data recorded at times (float).

Assume:
- times are hourly observations. That is, each day has 24 observations.
If the original data were recorded at finer granularity, then the Lloads
represent the average power for the hour in question.

Find the load variability for each unique timeOfDay in times:

- Set todLoads to those entries from loads that were recorded at one
unique timeOfDay from times.

- Set todCt to the number of observations in todLoads.

- Set todAve to the average of todlLoads.

- Set todSumSqDev to the sum of the squares of the differences between
todLoads and todAve.

- Set todStdDev to the corrected sample standard deviation of the todLoads,
that is, to the square root of (todSumSgDev / (todCt - 1)).

- Set todVar to the variability of todLoads, that is, to todStdDev / todAve.

Find the average of the daily load variabilities:
- Set aveTodVar to the average of the todVar values.

Return aveTodVar.

Done.

Other Summary Electric Load Statistics, Displayed
in the Report Table

Get inputs:
- times, vector of date-times (typically a time-specific format).
- Loads, vector of power data recorded at times (float).

Calculate statistics:

- For each day in times, find the metrics of interest:
* Set dayBase to the 5th percentile of lLoads for the day.
* Set dayPeak to the 95th percentile of Lloads for the day.
* Set dayRange to dayPeak - dayBase.

- Average across days:
* Set aveDayBase to the average of the dayBase values.
* Set aveDayPeak to the average of the dayPeak values.
* Set aveDayRange to the average of the dayRange values.

Return aveDayBase, aveDayPeak, and aveDayRange.

Done.

27
OpenElIS Reference Code v1.0

